text/microsoft-resx 2.0 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 17, 17 371, 17 264, 17 371, 17 iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK9SURBVDhPfVNtSFNRGL53OmHsQ93mds3pnUkR/VCIojDF SoxULOpXmh+VEFb0IZmpQQlGmSnkx0yaTQ3SsnLOhHD50ZaSWX8KUSE/CiLQsj/9CFrep3PONjSyHng5 5z3v87z3vO97LrcKEjmlrkUWlzQjS8nzyHYTI3t6xmL/gY5X6+3y1EJJdbEH2spB6Gvc0Fe7EHrFCVVx F+R7zkqE0025XskyDDLDhklNgQ0RN4Yg3nQjqmYIkVUDMF11IqLiKSLKe2Es6YIq1wKZIWaKarxSAl4t 9GtPtkGsH4FY64a5YQTRTWOItr5hZm4cZcnCy7ohFD9CcFYdeLWx3yfn9qkzSn3iF4zMxKuYWDcM4cJj GM60Q7njFKiW45WCg16TXlusHUbGg7coGZyGmSYkAr/l9Uwg0z5OSnsOw+l70OU3g1eSfgRt3LXgrzmq egiuuUVQJDS/ZH5yyxhcHxYhSRLcZKVn4WV26I/ZIDfFz3Oa5ByJik3XnKRhfXDPfmUJ0myjuPP6I37+ WmI+BY1RDm2o7qgVitikJU6TkivRBq253MvMPf2FkdtezbF1JWiM8S49gS6viSRIlzj55vR52oPwUjsE MibX+3lGTqzuQ2nnGL59/8F8ChqjHOH8Q2izGxG0LnGBCwwTHXTOdDzGwg44xz+xejeVO5i/vug+rM53 8JBSBiY+s7Ow420IPVgPXiM42Bj1hyvZDWgg9lw79laQJhW0Mp8a3W8tbkd8WSfztdkWqHb6xkjAB4aZ BoSiDu94jliJ3f6n0auHHKgiD0l4RsV+GAMi46YMp8hXT9yFNucWtJkNf1oWXesRsv86Agwxk0Sz/JR9 0PMaoyM4rVDSF7Swh8ISHbIQsYXUXAfl9nyJV+q6CPevn2klknhlaGvA2m2zCjHNoxBTPQHmLTO8QmMj sQQvxQ+O+w0UG9zYwCvIHAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK5SURBVDhPfVJbSFRRFL13xqnMcfTOjHced5xH9lGSUVGQ kRmFiUqkEFimTRlhiZVC2VhkgWbmA1LzUVIzSg+iHBs1SnEyK1EjP6JA+1A/+kmFPgI/QpjVOediZgxt WGzO3Wuts8/elwsSCZwguRWbkicVSc4FxT6CLclT5JuH1HbJlOCh4wWpU5VSBPXlLmgr/dDXDkJX/QZC WS/Cir1QJReCcJ4Trl6WLIVBIcWNh+fdg1T9GtZbb2GtHUD0zX5YKnohlb2E+VoPRJcX6pxGKMTYCaqR pRzH84KlX8j3wFb/HjYitjUMwd4yCkfrRwZ74zAx88N0qRPGC08RkVUPPtLip1pqkB6+3yWL697B3jQC BxUHAeUYL3ZAPPcIqxMLQLUcL9h8UkUfa5saMKO/EHdnBKWDU9jQMsy6s9YMQDz7ELoTreA1ko9bEbtn 9s+ba8j7CYFmOzm7+r5ibv4XAoEAnB2fEF3lZzVTSSd0J+9DFbNzhgvfmx2gYgvpwnK9l+WM9g/48v0n Ey7C+WQMUvkrxqED1eW2YlVcaoDTJB0N0Gmbr/YQdLP87cf8MjFFzoNRmK90wVxKOCRrnS0I3ZgW4NRb 02boqkwlXhhdHQRebCvvRvfY9DKDbPcQjMXP2BDpJrRHGrHCFj/HhVjX+eieaVEsfAyxiIBmMqj06hf4 PD3LDDKb5eHRWtTpNgiHGshP5fCxNeqPVbIO9KTwL0QyrIM3fDDnk3OeG/pTHna7evcZusYD1IBXmdb6 DeflW3XH7/4X2uwmRGZUkdst/VRLDWgYVsZsnhALPIjKb4c2pxnC4YblyLrNckR6JZTi+nGiEWXpUuhD 9FafJrWQtOlma6JGtF0tFWfWIWxHLvl5DF7C1cmS4JGo1BjalGvip0JtqQuhtpQFpWP7JB8mukktQaYs Bsf9BvJ9y/Q7+ip/AAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKfSURBVDhPfVNbSBRRGJ7ZdYVlL7qzs7tjro4mQUjkS0FU YheMVCLqqcxbSaKJlVCWBiUUaeZCXnbd2lg1KB8yddOKNi95A7EL9LRSaiREKNRLj4vzdc7MrBeUPviY M+f/vp///P85zCZIZwzWdk1axpwmszCsOUJI1nRPjv0HVtbE9+qyKiXjjZfg6ofBu8bAN47CcicIY1UP dEcvS0TTR7WKZRV2jX17yFzqR/z9EYgPxpDoGkFCwxCcd4OIv/0G8bUDcFzvgbHADY09ZYZ6FCsBaxIG ufJOiC2TEJvGkNQ6iWTvNJJ9H2UmeabkZHE1fRCquhGT2wzW5BhU7cxx07Fq1Twui2XzJhSbJyBcewH7 pWcwHKgA9TKsQQjQMmnZYtOELCp7PYMvi39R8iok/69lous97Befwlr8GKyB9CM69dBS5MyJjQq9HxYQ wfiPP8jsnF6JUcbV9IIv8UPn3LvImA/nS9TsrAuShr2V6Z36rtoVhJeX0fFpAamuYTlOG2o954N+Z8Yy Y84skGiDttwaWGHb5JxqXQ/PxKyiudkPa6GXJMiRGN2unEXag7jqXghkTJSe0a+qRYEkSeiemsWO2oCi ufocXJ4H0dvSl5gomxigc6bjcVR2yXQPh1Qr8PnbL2TX9cudj8RtZZ2wnGoBaxYC8hj5onq5AhqgLPON YP7nb5S7g7Cd96/sR8jluWE8qI6RgI2yOYeEK13KeM76wBU9hOWMm6wfbSAtPfZkA7lIwjtqjsChTUib sVd0wHbhCbj8NnCnW9czl35bEHviHrT2lBDxrF5lFTxrdgRisislvrRdvihyIlIJl+smZ26GYV+xxBqs PUS74TGtRQZrsHRot+6Z14vZYb2YFdYm7Z5j9WY/ie1XJBEwzD9i2NfQid+uMAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK7SURBVDhPfVNtSFNRGL53OmHsQ93mds3pnUkR/UiIojDF SoxULOpXmh+VEFZYSWZqUIJRZgr5MZNmU4O0rJwzIVx+tKVk1p9CVMiPggi07E8/gpb36ZyzDY2sBx7O fc/7PGfved8zbhUkcEpdiyw2cUaWnOuR7SEk33SP5f4DHa/W2+UphZLqYg+0lYPQ17ihr3Yh9IoTquIu yPeelYimm2q9lmUYZIYNk5p8GyJuDEG86UZUzRAiqwZguupERMVTRJT3wljSBVWOBTJDzBT1eK0EvFro 155qg1g/ArHWDXPDCKKbxhBtfcNobhxlh4WXdUMofoTgzDrwamO/z87tV6eX+swvmJiZV6FYNwzhwmMY zrRDubMA1MvxSsFBy6Rli7XDyLCPI7dngon9NJPDSwankf7gLbnacxhO34Murxm8kvQjaOPuBf+do6qH 4P6wCEmS4CJrUssY24tvfgkK19wii8PL7NAft0FuipvnNEnZEjWbrjlJw/rgnv3KxBQ/fy3hzuuPSLWN spjmqIY2VHfMCsWmxCVOk5wj0QatudzL6J7+wsQr0fZqjq00x3SXnkCX20QOSJM4+Za0edqD8FI7BDIm 1/t5Jqb49v0HSjvHkFDdx2Kaoxrh/ENosxoRtC5hgQsMEx10znQ8xsIODEx8hoeUbnW+w/qi+2xvc7mD 9cU5/onFYSfaEHqoHrxGcLAx6o9UsgpoIq6sE9uK26HPb2UxJf3eV2FH7Ll2FmuzLFDt8o2RgA8MMw0I RR3e8Ry1Et7+J2npIQeryEMSnlGzH8aAyNgpQwH51ZN3oc2+BW1Gw5/MpGs9Qg5cR4AhZpJ4lp+yD3pe Y3QEpxZK+vwW9lDYQYctxGwhd66DckeexCt1XUT7159pJRJ5ZWhrwNrtswox1aMQUzwB5q0zvEJjI7l4 r8QPjvsNWSfc2bvcdIgAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHGSURBVDhPYxhcoGH1q/8gXLfyxf/SpU/3Q4XhILj3ZntA /c0vUC4maFj94v+Wc5/+Lzr47n/BgocoBnh3Xm/3ql/7z7Xlxn+oECYoX/bs/4bTH/7P3ffmf+pMhAGe LVf7Mufe/z9hy/P/ltWXcBtQsODR/9Un3v+ftvPV/5iJd8EGuLdcm5c26/7//q3P//duevZfp+Q8bgNS Zz/8v/TI2//9W178D+y8ud+x/vKSlOl3/0/Y+gwYLo/+t6598l8u+yxuA2Im3f8/78Dr/zN2v/xvVn/i R/Gih//7Nj/7X7n84f/sOXf/1614+F8q6QRuA4K6b4I1gzRZVl94kzvv3v+2dU/+Fy68/z9p+u3/ZYvv /5eIPIbbAFAIT9z24n/5kof/tYrPH5DNPL3GpfHy/6rlD/4nT7/1v2D+vf/iQQdwGwAK4a6NT//nzr33 XzbzLDgQJaOOrLQtv/A/b/7d/1mz7/wX89qL2wBQCDevefw/FehcycQT8GgU89i9yCL7FNgVIo67cRsA CuFqYEDFTbwB9OtRlIQkYrd1gXHKsf/CNttxGwAKYcmYY/8lQo/8Fw08gGIACAgZbpwtZLkNtwEDABgY ACDdDJUDHk/XAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8 YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHISURBVDhPzZBLSxtRGIbnN2jU6MIfIP6BiAiKCioVtIiE iohWwQriDUUDxlsa06BosI0ajJK2IToqXsDgrWfAC9mIrUpIijEmk6TTeNu46Kpv55QhIOWs6wtn8b1w nu/j4Z5X9Lz02O+SjMqYSONMiNS9D0I7EUCl2Q+l/jcDvASdfu93uyP8BFIzGSDmzR+Y3YujaMTHBvQ4 Y1jxPGB0TUL9h6txpeYqTH4yshrBlFuCRnfGBrQthMHLAOfBPfqcUbww+ey0l7cSnUvE2EYM2V2nbECj LYTPh3ew7sRh/xJH81wQmt6vnzS930in4xqGlQgyW07YgBpLEHbhBsa1GEzrMVjkk1tlSFaH59cgH0a/ K4SMeg8bQA1P7/6EfknEEC/CvBFF00wAma9Pbrs+BtEtP7X2mA2ghie3JOgXRfmCCMqMXmQ0eJblrUKt xY+2+SukVQpsADX8bj2Kt7LxYoMX6XVHi7RXa49ItdmLN7ZLpJbuswHU8PCyiMLBc6S/OnYoNZdSIZCX hgs0WL9Dlb/LBlDDBfSz9nBBqf4mpWSflA+coXbKh+RcNxtADaurBJsyJqLK3yaqvG0k57iRpNliA/5D OO4P/esL+3tZLhEAAAAASUVORK5CYII= 264, 17 124, 17